
GraTS: graph transformation-based
stochastic simulation — documentation

Paolo Torrini, Istvan Rath

December 11, 2011

1 Introduction

GraTS implements a framework to run discrete-event stochastic simulations of
semi-Markov processes based on generalised stochastic graph transformation.
Graph transformation rules are used to define observable events that lead
from one state to another (action rules), as well as quantitative observations
over states (probe rules). GraTS enables the execution of structured simulation
experiments made of multiple batches of bounded runs, allowing for variations
in sensitive parameters that may include maximum length. It can compute
statistics about action rule application, timing, probe rule values and covariance
matrix, based on different forms of aggregation of the observations throughout
an experiment.

GraTS is implemented in Java as a functionality of VIATRA2, a rule-based
language interpreter based on abstract state machines and incremental pattern
matching, available as Eclipse plugin. GraTS relies on the implementation
of graph transformation given by VIATRA2, taking advantage of incremental
pattern matching to deal efficiently with semi-Markov processes. GraTS uses
the SSJ libraries to deal with random number generation, distribution functions,
confidence intervals and other statistics. GraTS also allows for the visualisation
of individual runs, based on graph visualisation as provided in Eclipse by Zest.

1.1 Models

Models are generalised graph transformation systems. They can represent
discrete event systems, where each state is a graph of given type, and each event
is given as a transformation rule matched to a subgraph of the current state.
Each event has a sort, and it is associated to a random variable that represents the
scheduled delay as specified by a continuous cumulative distribution function
(cdf) assigned to the sort.

Each model is put in as a VIATRA2 graph transformation system together
with a cdf assignment to event sorts. By default, the sort of an event is the
same as the associated rule name — but this can be modified, by considering
attributes and therefore making cdf assignment depend on local values.

1



Statistics are computed by using SSJ methods. In particular, we use the
Report method to compute average, maximum, minimum and standard devi-
ation (report values) for each observation which is stored as an instance of the
Tally class. Statistics may refer to the following possible observations.

1. for each state, number of matches for each probe rule

2. for each run, application and timing for each action rules (i.e. number of
applications divided by the run length, and average delay)

3. variables obtained by aggregation of report values based on batch (set of
runs with same parameters), slice (set of runs with varying parameters)
and experiment (set of batches)

4. confidence intervals for mean and variance

5. correlation between pairs of observations

The underlying stochastic model is that of a semi-Markov process allowing
for exponential and lognormal distributions (lognormal instead of normal, as
all our variables represent time delays and thus we need only positive values).

2 Input requirements

Running a simulation requires the following

1. a GTS

(a) the metamodel

(b) the initial model

(c) the transformation rules, as a vtcl file

The model should be contained in a dedicated element of the model space

2. setting the execution parameters — these include

(a) external parameters, as passed by the model space

(b) internal parameters, as passed by an XML file (parameters.xml)

3. setting the stochastic structure, as defined in an XML file (stochastic input
file) — this includes

(a) stochastic control types for the transformation rules, which define
how to use the rules with respect to transformation and probing

(b) event sorts associated to action rules — as subsets of rule matches

(c) assignments of cumulative distributions functions to the action rules
and (optional) to the associated event sorts

(d) stochastic variation control values (optional)

2



3 Simulation experiments

A simulation experiment consists of a set of runs, each specified by a given
stochastic assignments, and executed up to a given maximum length. Each
experiment is structured as a sequence of variations, each variation defined
by a batch of simulation run. All the runs of the same batch share the same
stochastic parameters. Runs from different batches can vary, either in stochastic
assignment or in maximum length.

Under the hierarchical aggregation option, statistics are printed for each run,
batch and experiment. At each level, observations are printed out as comma-
separated values, statistics as JSS reports and covariance analysis output. Under
the 2D-linear aggregation option, statistics are aggregated for batches (horizon-
tally) and slices (vertically) after execution. Aggregation is exhaustive for runs
of the same batch, arbitrary for slices. A slice is defined as a set of runs, each
from a different batch, so to have one for each variation, and never the same in
two different slices.

4 Rules and events

Each transformation rule should be assigned a type - these are represented
alphabetically as ordered strings made of

1. ’A’ for applicable rule (action)

2. ’S’ for sensitive action

3. ’O’ for observable action

4. ’P’ for probe rule

such that if either ’O’ or ’S’ occurs, also ’A’ does. In other terms, the letters
are primitives, ’S’ and ’O’ are subtypes of ’A’, and each string represents an
intersection.

Event sorts are represented as integers, with 0 as default. In the basic
implementation, based on class ETuple1, the default event type is the only one.
Shifting to ETuple2, it is possible to introduce more event sorts, to be associated
to rule matches on the basis of designated attributes.

For each action rule, each event sort should be assigned a cdf, as follows

1. exponential distribution
type: exp (String)
numeric parameter: rate (Double precision)

2. lognormal distribution
type: norm (String)
numeric parameters: mean, variance (Double precision)

3



Action rules are used to be scheduled for execution, on the basis of the cdf
associated to their event types. In the case of sensitive rules, the cdf can vary
through different batches. This can happen automatically — by multiplying the
initial parameters by a power of a base value up to a limit, or else sequentially by
each of the variation values given as input manually in the stochastic input file.
If rules are observable, the simulator returns statistics about their application
(listed as ’APP:rulename’), and about the delay with which they have been
applied over each run (listed as ’OBS:rulename’), both printed to the batch
report files.

If a rule is a probe rule, the simulator will collect the number of its matches
at each step. These statistics can be printed to the batch report files by defining
probes that refer to the rules.

5 Stochastic input file

The stochastic input file should include

1. a set of stochastic assignments

2. probe definitions

3. a set of variation values

A rule set (tag ruleset) is given by a stochastic assignment together with a
set of probe definitions — more precisely

1. an assignment of control types to transformation rules (tag rule) from the
vtcl file

2. an assignment of cdfs to the event sorts (tag event) associated with action
rules in the rule set

3. a list of probe definitions

Each probe (tag probe) is defined in terms of an operator (tag op) which may
either be a probe rule name, or else be an operation applied to arguments (tag
arg) which are probe rule names. The operations that are currently supported
are sum (sum of two arguments), div (division of first argument by the second),
and divsq (division of first argument by the square of the second). Notice
that the position of the argument is given explicitly as an integer value (tag
pos). The simulator adds automatically to the probe list TIME, recording the
application times (in terms of simulation time — independently of any real
time interpretation), and DELAY, recording the delays associated to the applied
matches. No user-given probe name should be “TIME”, “DELAY”, or start with
either “OBS:” or “APP:”.

Each variation value (tag variation) is given as a double precision value.
allvars and probeset are optional tags.

4



6 Output

There are three kinds of output that are printed out. Observation samples are
printed out as lists of comma-separated values. Statistics over samples are
computed and printed out as SSJ reports. These include average, maximum,
minimum and standard deviation, and moreover, the student-T and normal
confidence intervals for the mean, and the Chi-2 confidence interval for the
variance, with respect to a given confidence level. In the case of hierarchical
aggregation, output is provided at the level of runs, batches and experiment.
In the case of 2D-linear aggregation analysis, CSV output is given at the level
of runs, and reports are given at the level of batches and slices. General in-
formation about the experiment settings and run-time values in milliseconds
are printed out to a separate file. Moreover, different levels of debugging
information are printed to the Eclipse standard output.

7 Execution parameters

7.1 External parameters

The external parameters are stored in the StoSimPars element of the model
space. StoSimPars need to be created as a child of the root.

The parameters are

1. Machine — the VIATRA machineFQN parameter, that can be derived from
the namespace and machine declarations included in the VTCL file. E.g.
given the declarations

namespace n; machine m;

the value of machineFQN is then n.m

2. ModelPath — the qualified name of the model space element which that
is the target for the simulation. The dedicated model element should be
a child of ModelPath (and therefore, ModelPath is also the relative path to
the dedicated model element). Notice that at initialisation the simulator
will copy the internal parameters and the stochastic parameters from
the XML files to subelements of ModelPath (parameters and distributions,
respectively) — unless extInputOPtion is set to false

3. ioPath — the absolute path to the folder that contains the specification of
the GTS

4. ioInputFolder — the subfolder of ioPath where the input XML files are to
be found

5. extInputOption - Boolean value (as a string) which decides whether the
internal parameters are to be read from the XML file or to be found already
in the model space

5



7.2 Internal parameters

If not already in the model space, these parameters should be found in an
existing XML file with name parameters.xml located in ioPath.ioInputFolder. They
can be divided into five groups.

7.2.1 IO parameters

1. CDF input (string) — the name of the stochastic input file, to be found in
ioPath.ioInputFolder

2. Output Folder (string) — the name for the subfolder of ioPath where the
output log files are printed out

3. Output Files (string) — name prefix for the log files where the output is
printed out

7.2.2 Run parameters

1. Rule Set (string) — the name of the rule set (among those included in the
stochastic input file)

2. Batch Size (integer as string) — number of runs for each batch

3. Time Opt (Boolean as string) — if true, each run is limited by a maximum
simulation time, otherwise it is limited by a maximum number of steps
(depth)

4. Time Limit (integer as string) — maximum number of steps (converted to
double precision and used if Time Opt is set to true)

5. Depth Limit (integer as string) — maximum number of steps (used if
Time Opt is set to false)

7.2.3 Variation parameters

1. Variations (integer as string) — number of the variations, i.e. of the batches
executed for the experiment (gives also the size of each slice)

2. Variation Type (character as string, N|S, S as default) — set to N, the
variations are in the maximum length of the run (increasing by a factor of
10 for each batch); otherwise, the variations are in stochastic assignment
of the sensitive rules (i.e. in ’speed’); notice that if set to speed with no
sensitive rules, there is no change in the batch settings

3. Factor Up Opt (Boolean as string) — only used with speed variations; if
set to true, the speed variations are obtained by multiplying the initial
stochastic parameters of the sensitive rules by a power of Factor Up Base
(integer as string); if set to false, the variation values are read from the

6



stochastic input file (where they are expected to match the variation num-
ber)

7.2.4 Output parameters

1. Hierarchical Aggregation (string) — set to full prints out the full hierarchical
aggregation analysis, which includes covariance and correlation, set to
short prints out the full analysis for the first two levels (runs and batches)
and a selection of the experiment level output

2. 2D Linear Aggregation (string) — set to basic prints out only a general
analysis on time and depth, set to batch prints out batch reports, set to slice
prints out slice reports, set to full prints out the full 2D-linear aggregation
analysis

3. Debug Level (integer as string) — sets the amount of debug information
printed out to the Eclipse console. It can be set to 0 (no debug except
at initialisation), 1 (prints out the applied rules), 2 (prints out info about
matches - very slow), 3 (prints out more internal representations)

4. Confidence Level (double precision as string - positive and less than 1) for
the confidence intervals

7.2.5 Extra parameters

1. Debug Level (integer as string) — sets the amount of debug information
printed out to the Eclipse console. It can be set to 0 (no debug except at
initialisation), 1 (prints out the applied rules), or 2 (prints out info about
matches - extremely slow)

2. Covariance Opt (Boolean as string) — sets whether the covariance analysis
is carried out

3. Feedback Opt (Boolean as string) — if set to true, the simulator will look at
each step for an element named as Clock Name in the model, and set its
value to that of the current simulation time

4. Clock Name (string) — used with Feedback Opt

5. Extra Attribue (string) — when the simulator sources are recompiled with
ETuple2 rather than default ETuple1, it is possible to select an attribute X
with integer values, such that for each match, the simulation will use the
values of the instances of X included in the match to determine the event
sort using Extra Operator

6. Extra Operator (string) — either min or max (the latter by default)

7



8 Installation from SVN

Requirements: Java 1.6.x, Eclipse, VIATRA2. The SVN repository is located at

http://viatra.inf.mit.bme.hu/svn

Check out everything from

https://viatra.inf.mit.bme.hu/svn/core/trunk/

https://viatra.inf.mit.bme.hu/svn/stochsim/trunk/

Simply delete what gives conflict. In special cases, one might also need addons
such as ViatraDSM (https://viatra.inf.mit.bme.hu/svn/dsm/trunk/), or
others — these are easily found inside the main SVN hierarchy by name.
Run configurations and switch to the VIATRA perspective in the run-time
framework. Simulation project samples can then be checked out from

https://viatra.inf.mit.bme.hu/svn/transformations/

collab/trunk/stochastic gt

9 Running the simulation

Launch a run-time framework, open the VIATRA perspective, load the model
and the rules. The model space should include the external control parameters.
The model should be in the dedicated element, and there should be a folder
with the XML input files as specified by the parameters.

Check that the VIATRA textual output is not buffered (green toggle button
to the top right of the window). Right-click on the model icon in the model
space window, and select Run stochastic simulation.

10 Visualisation

It is possible to visualise the simulation, while running it in default automatic
mode, or else while executing a single run interactively, step-wise. It is also
possible to customise the visualisation (by filtering elements and changing their
look).

The following steps are needed in order to set the visualisation environment.

1. activate the visualisation for the dedicated model element subtree by
right-clicking on it and selecting Add subtree

2. you have the option of using a domain-specific visualiser module, by
selecting the drop-down menu of the VIATRA visualisation view (small
triangle towards the right on the menu bar of the view , picking Layout,

8



and finally the stoch-sim layout). You can revert to the standard layout
using the same menu. More details on domain-specific visualisation can
be found at

http://viatra.inf.mit.bme.hu/publications/traceviz

If you are interested in customizing the visualisation layout yourself, you
can do it by changing the class:

https://viatra.inf.mit.bme.hu/svn/stochsim/

trunk/org.eclipse.viatra2.gui.stochsim/src/org/

eclipse/viatra2/gui/stochsim/viz/StochSimFilter.java

3. to start the interactive mode, right-click on the model icon and choose the
setup interactive stochsim option. The Interactive stochsim control view
will pop up, with the corresponding machine selected.

11 Command-line version

It is possible to build a version of the simulator that can be run by command-
line. In order to obtain it, the following steps should be taken (only with Linux
and Eclipse-Galileo)

1. open the sscons2.product file in console.stochsim, and in the editor locate
the option Exporting/link to Eclipse Product Export Wizard

2. in the opening dialog, 2a. enter a name for the root directory if it isn’t
already entered (e.g. stochsim) 2b. select a destination directory where
the binaries will be deployed 2c. export options: only the allow for binary
cycles option should be checked (not sure whether this always shows) 4.
click finish 5. if everything goes well, in the directory specified a so-called
headless version will be deployed along with an executable that can be
run e.g. like this:

./stochsim LOC/mymodel.vpml LOC/myrules.vtcl mymodel.myrules

The three mandatory parameters are:

1. VPML file (FQN), 2. VTCL file (FQN), 3. the machineFQN parameter,
to be passed to the simulator (this will also reset the StoSimPars.Machine
external parameter).

The StoSimPars.extInputOption will be reset to true — therefore, it will
read the internal parameters from the XML file. The remaining external
control parameters are those set in the model space when you run the
export wizard. Alternatively, one can pass them as additional parameters
from command line, in the following order:

9



4. ioInputFolder 5. ioPath 6. modelPath

In practice, only the first one can be useful, if you keep different XML files
in different locations.

10


